

OUNDLE SCHOOL

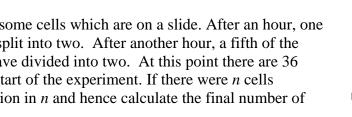
MAIN ACADEMIC SCHOLARSHIP 2008

MATHEMATICS

PAPER 1

$1\frac{1}{2}$ hours.

CALCULATORS ARE NOT ALLOWED FOR THIS PAPER.


INSTRUCTIONS TO CANDIDATES.

You may answer the questions in any order. You are not expected to have time to do all the questions. Choose those questions which you think you can answer best. **Remember to show your working and clearly show the method you are using**. Some questions are longer than others. The number of marks for each question is shown in square brackets.

28 + 531. Work out a) 13×47 b) 1300×4700 c) 0.13×0.47 d) $2008 \div 8$ e) f) $2008 \div 0.08$ 2008 g) 5.02

2. A scientist is studying some cells which are on a slide. After an hour, one third of the cells have split into two. After another hour, a fifth of the new number of cells have divided into two. At this point there are 36 more cells than at the start of the experiment. If there were *n* cells initially, form an equation in *n* and hence calculate the final number of cells on the slide.

[8]

[7]

[12]

3. If
$$s = x - x^2$$
, $t = x^2 - x^3$, and $u = \frac{1 - x}{x}$,

i) find the values of *s*, *t* and *u* in each of the cases:

a)
$$x = 2$$
 b) $x = \frac{1}{2}$ c) $x = -2$

ii) find a formula for u in terms of s and t in a way which does not use x. [13]

4. A whole number is said to be in "oddball form" if it is written as an odd number multiplied by a power of 2.

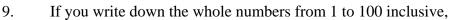
12 in oddball form is 3×2^2 , and 120 in oddball form is 15×2^3 . e.g. Write in oddball form: 96 a) 40 b)

Work out the answer to these calculations, giving the answer in oddball form:

c)
$$3 \times 2^{4} + 7 \times 2^{4}$$

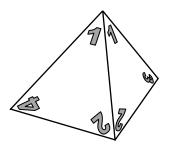
d) $5 \times 2^{6} - 3 \times 2^{5}$
e) $8 \times (3 \times 2^{9})$
f) $11 \times 2^{100} + 13 \times 2^{102}$
g) $\sqrt{81 \times 2^{100}}$ [12]

5. Find a 3-digit number such that if you multiply it by 3 and add 1, the answer is the original number with its digits reversed.


- 6. [In this question, you should clearly show the steps of your working and the approximations you make.]
 - a) Estimate to 1 significant figure the value of $\frac{\sqrt{78}+3.48\times2.13}{0.912^2}$
 - b) Is it true that more than 5 million seconds have elapsed since the start of 2008 until the time you are doing this exam?
 - c) Is it possible for a person to drink enough in a lifetime to empty a swimming pool? [*Note:* $1m^3 = 1000$ *litres.*]
- 7. The harmonic mean, *H*, of two numbers *x* and *y* is found by using:

$$\frac{2}{H} = \frac{1}{x} + \frac{1}{y}$$

- a) Find the harmonic mean of 3 and 4.
- b) Find the harmonic mean of $\frac{4}{r}$ and $\frac{6}{r}$.
- c) If x is a positive number such that the harmonic mean of 6 and x is greater than 2, deduce the possible range of values of x.
- 8. Roger rolls two tetrahedral dice, and adds the score on the two dice. Carol rolls **three** tetrahedral dice and adds the scores. All dice are numbered 1–4; the diagram shows a tetrahedral die where a 1 has been rolled.


Find the probability that:

- a) Roger scores 4.
- b) Roger scores more than 5.
- c) Carol scores 3.
- d) Carol scores 7.

- a) how many times will you write the digit 0?
- b) how many times will you write the digit 7?
- c) how many times will you write the digit 1?
- If one of the 100 numbers is taken at random, what is the probability that
 - d) it is divisible by 7?
 - e) it is divisible by either 5 or 7 (or both)?
 - f) it is divisible by at least one of 2, 3 or 5?
- Place the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 in an order so that the first *n* digits form a number divisible by *n* for all values *n* from 1 to 9.
 [e.g. if the digits are ordered "*abcdefghi*", then 2 must divide the number written as "*ab*", 3 must divide "*abc*", 7 must divide "*abcdefg*", etc...] [10]

END OF EXAMINATION

[14]

[12]

[16]